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Importance of polarization for quarkonium studies
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Experimental studies of the decay distributions of vector particles provide a uniquely 
detailed way of testing fundamental theories

In particular, quarkonium polarization measurements are expected to provide key 
information for the understanding of QCD

“Quarkonium represents for QCD what positronium is in QED”
But how well do we know the mechanisms of its production?



The seeming success of NRQCD
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In 1995, CDF observed J/ψ and ψ’ direct production cross sections ~50 times larger than 
existing calculations based on leading-order colour-singlet production

The NRQCD framework (where quarkonia are also produced as coloured quark pairs) 
apparently solved the problem… by freely adjusting long distance colour-octet matrix 
elements to describe the measurements
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singlet
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A rebirth of the colour-singlet model?
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(1S)

Recently calculated high-order corrections to the colour-singlet 
mechanism give flatter pT spectra, leading to much larger high-pT rates.
The Tevatron data no longer require a large colour-octet component, 
especially in the  case…

 Differential cross sections are insufficient information to ensure 
progress in our understanding of quarkonium production

CDF



The crucial test: polarization measurements

λθ

CDF Run II data: prompt J/ψ @1.96TeV

CDF Coll., PRL 99, 132001 (2007)
weak “longitudinal” polarization

NRQCD factorization: prompt J/ψ 
Braaten, Kniehl, Lee, PRD62, 094005 (2000)
strong “transverse” polarization

NLO colour-singlet: direct J/ψ
Haberzettl, Lansberg, PRL100, 032006 (2008)
strong “longitudinal” polarization

d cosθ
1 + λθ (cosθ)2

dN
θ = angle between lepton direction

(in the J/ψ rest frame)
and J/ψ lab direction (helicity axis)
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λθ > 0: transverse (= photon-like)
λθ < 0: longitudinal



Experimental puzzles: J/ψ

E866:            0.25 < xF < 0.45,    √s = 38.8 GeV
HERA-B:     -0.34 < xF < 0.14,     √s = 41.6 GeV
CDF:                |yCM| < 0.6,         √s = 1960 GeV

E866:      PRL 91, 211801 (2003)
HERA-B: EPJ C 60, 517 (2009)

Helicity

Collins-Soper

Collins-Soper

CDF Run I:  PRL 85, 2886 (2000)
CDF Run II: PRL 99, 132001 (2007)

CDF vs  CDF

E866 vs  HERA-B →  there must 
be a strong pL dependence

CDF vs  low-pT →  how do the 
different frame conventions
affect the comparison?

Helicity

•

•

•
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Experimental puzzles: 

E866 →  (~ directly produced) (2S+3S) 
have same polarization as Drell-Yan 
(Collins-Soper frame!)

E866 (1S) vs (2S+3S) →  dominant 
feed-down effects for (1S)?

CDF vs  D0 → may a 
strong rapidity 
dependence justify the 
discrepancy?
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E866: PRL 86, 2529 (2001)

D0 Run II:  PRL 101, 182004 (2008)
CDF Run I: PRL 88, 161802 (2002)
CDF Run II preliminary

(1S), √s = 1.96 TeV

•

•

•
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Back to basics

8

We believe that better experimental and theoretical results can be achieved by 
going back to the fundamentals.

• Production models involve complex calculations

• Measurements are experimentally challenging (need high statistics and perfect 
control of geometric/kinematic acceptance limitations).

• Today, theory is unsuccessful, while the experimental scenario is contradictory.



What is a polarization measurement?
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Given a chosen quantization axis  z,  a  J = 1 particle can be produced in one of three 
possible Jz eigenstates (-1, 0, +1) or in a certain mixture of the three

We measure the (average) angular momentum state in which the particle is produced 
by studying its decay distribution

The decay into fermion-antifermion pair is an especially clean case to be studied

The shape of the observable angular distribution is determined by few basic principles:

1) “helicity conservation” → fixes relative spin orientations of the two decay fermions

2) rotational covariance of angular momentum eigenstates

3) parity conservation (when relevant)



1) helicity conservation
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EW and strong forces preserve the chirality (L/R) of fermions.
In the relativistic (massless) limit,  chirality = helicity = spin-momentum alignment
→ the fermion spin never flips in the coupling to gauge bosons:

* , Z , 

g , ...

f

forbidden

forbidden



Example: leptonic decay of J/ψ
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Whatever the J/ψ angular momentum component

MJ/ψ =  -1,  0,  +1 along the polarization axis z,

the two leptons can only have total angular momentum component 

M’ℓ
+

ℓ =  -1 or  +1 along their common direction z’

ℓ +

c

c

ℓ 

J/ψ *
J/ψ rest frame:

z'

z

 1, MJ/ψ 

θ

ℓ+

ℓ

+1/2
(–1/2)

+1/2
(–1/2)

0 forbidden



2) rotation of angular momentum eigenstates
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z'

z

 J, M 

θ,φ

change of quantization frame:

R(θ,φ): z → z’
y → y’
x → x’

Jz eigenstates 

Wigner D-matrices
(in angular momentum textbooks)

 J, M’  = DMM’(θ,φ)  J, M 
J

Σ
M = - J

+ J

z'

z
90°

1
, +

1
 

Example:

 1, +1  +        1, 1    1, 0 
1
2

1
2

1

√2

Classically, we would expect only   1, 0 



Basic angular distribution
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J/ψ rest 
frame

z'

z

 1, +1 

θ

ℓ+

ℓ

J/ψ (MJ/ψ = + 1) → ℓ+ℓ(M’ℓ+ℓ = +1)

→ the  Jz’ eigenstate  1, +1  “contains” the  Jz eigenstate  1, +1 

with component amplitude D+1,+1(θ,φ) 

→ the decay distribution is   |D+1,+1(θ,φ)|2 =      (1 + cosθ)2

 1, +1  = D1,+1(θ,φ)  1, -1  +  D0,+1(θ,φ)  1, 0  + D+1,+1(θ,φ)  1, +1 1 1 1

1

1
4

z



3) parity conservation
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z

θ

ℓ+

ℓ

zMJ/ψ = + 1

θ

ℓ+

ℓ

zz

=      (1  cosθ)21
4

 1  +  cos2θz

 |D1,+1(θ,φ)|2

=      (1 + cosθ)21
4

 |D+1,+1(θ,φ)|2

 |D1,+1(θ,φ)|2 + |D+1,+1(θ,φ)|2

The two processes have identical probabilities

MJ/ψ = + 1

dN
dΩ

dN
dΩ

dN
dΩ



3bis) parity violation
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Example: W-boson decay
W only couples to left-handed fermions (and right-handed antifermions): 

z

θ

z

θ
(e+)L

(νe)R

W → e+νe

(e+)R

(νe)L

→           (1  cosθ)2

forbidden

MW = + 1 MW = + 1

parity-violating term
(“forward-backward” asymmetry)

dN
dΩ

=   1  +  cos2θ  2cos θ



“Transverse” and “longitudinal”
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y

x

z

y

x

z

 J/ψ  =   1, +1 

or   1, 1 

 1  + cos2θ
dN
dΩ

 J/ψ  =   1, 0 

 1  – cos2θ
dN
dΩ

“Transverse” polarization,
like for real photons.
The word refers to the
alignment of the field vector,
not to the spin alignment!

“Longitudinal” polarization

 1  + λθ cos2θ
dN
dΩ

–1 < λθ < +1

Transverse and 
longitudinal processes 
can be mixed together:



Why “photon-like” polarizations are common
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We can apply helicity conservation at the production vertex to predict that
all J =1 states produced in fermion-antifermion annihilations (q-q or e+e–) at Born level 
have transverse polarization

(2S+3S)

Drell-Yan

pT [GeV/c]0 1 2
- 0.5

1.0

0.0

0.5

1.5

E866, Collins-Soper frame

dN
dΩ  1  + λθ cos2θ

Drell-Yan is a paradigmatic case
But not the only one

The “natural” polarization axis in this case is
the relative direction of the colliding fermions
(Collins-Soper axis)

q

B J =1
z

(             ) (             ) (–1/2)
+1/2

MB = +1 (–1)
q

qq

q-q rest frame
= B rest frame



What polarization axis?
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λθ

CDF Run II

NRQCD

NRQCD predicts that, at very large pT , quarkonium 
should be produced from the fragmentation of a 
quasi-real gluon, inheriting its natural spin alignment.

Helicity frame

c

c
g

g g

g

A large, transverse polarization should therefore be observed 
along the J/ψ (=gluon) momentum (helicity axis).

Existing high-energy measurements, 
essentially driven by the NRQCD 
hypothesis, chose the helicity axis 
and made no further investigations. 
In the kinematic regime probed 
today, the model fails.

What would CDF find, e.g., in the Collins-Soper frame?
How well can the current measurement constrain other (non-NRQCD) hypotheses?

We have seen examples of polarizations naturally defined along the direction of the 
collision (Collins-Soper axis).  Today, the high-energy quarkonium community is rather 
focussing on another axis definition.



The general distribution
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221 co sin2 coss sin cos2
dN

d
      

  

2sin sin2 sin2 sin      

asymmetric by reflection about the production plane
→ must be zero in inclusive measurements 

quarkonium 
rest frame

production 
plane

yx

z

θ

φ

ℓ +



“Unpolarized” J/ψ does not exist
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221 ...sin c sin2 cc o oso s2s
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Single elementary subprocess:
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There is no combination of a0, a+1 and a-1 such that λθ = λφ = λθφ = 0

→ Polarization is a “necessary” property of J = 1 states
Measuring and understanding it is crucial

... also from an “experimental” point of view:
quarkonium acceptances depend strongly on the 
dilepton decay kinematics. Quarkonium is by default 
unpolarized in MC generators...

Only a fortunate mixture of subprocesses
(or randomization effects) can lead to a cancellation 

of all three measured anisotropy parameters

The angular distribution is never intrinsically isotropic

1 0 11, 1, 1,a a a    -1 0 +1



The observed polarization depends on the frame
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For |pL| << pT , the CS and HX frames differ by a rotation of  90º

y

x

z

y′

x′

z′

90º

1 1 1
1 1 0

2 2 2
    

2 2
3

1
3

11 co sin cos2s
dN

d
  



1  

21 cos
dN

d






The azimuthal anisotropy is not a detail  
22

y

x

z

y

x

z

These two decay distributions are indistinguishable when the azimuthal dependence 
is integrated out. But they correspond to opposite natural polarizations, which can 
only be originated by completely different production mechanisms.

In general, measurements not reporting the azimuthal anisotropy provide an 
incomplete physical result. Their fundamental interpretation is impossible
(relies on arbitrary assumptions).

|±
1

 

λθ = +1
λφ = 0

λθ = +1
λφ =  1

21 cos
dN

d



2

21 cos

sin cos2

dN

d


 




Case 1: natural transverse polarization Case 2: natural longitudinal polarization, 
observation frame  to the natural one



How would the CDF J/ψ result look like in the CS frame?
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λφ

λθ

CS

|λφ| ≤  ½(1 + λθ )

for all possible hypotheses on λφ
HX

Without information on the azimuthal anisotropy,
we cannot translate λθ from one frame to another

HX

λφ = 0
HX



One hypothesis 24

J/ψ’s naturally polarized in the CS frame
• most significant λθ

• purely polar anisotropy, λφ ~ 0

Assuming that this continues to 
be valid up to collider energies

P. Faccioli, C. Lourenço, J. Seixas and 

H.K. Wöhri, PRL 102, 151802 (2009) 

HERA-B (CS) 

E866 (CS)

CDF (HX) 

All translated to the CS frame
as function of p

HERA-B 



Message nº1
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Today, we are allowed to make the speculation in the previous slide because 
CDF has not reported the azimuthal anisotropy.

We have assumed that
λφ = 0 in the CS frame.
This automatically implies that 
a significant value of λφ should 
be measured in the HX frame:

By measuring also λφ CDF will remove this ambiguity of interpretation.

Measure the full angular decay distribution, not only 
the polar anisotropy.



What if E866 had chosen the helicity frame?
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E866’s (2S+3S) result is compatible with
the Drell-Yan “template” 1 + cos2θCS

CS frame

HX frame

In the helicity frame λθ would be seen as strongly kinematics-dependent:

1/3



Reference frames are not all equally good
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How the anisotropy parameters transform from one frame to another depends explicitly
on the production kinematics. In fact, the angle δ between helicity and Collins-Soper 
axes is given by

We consider  decay. For simplicity of illustration we assume that each experiment has 
a flat acceptance in its nominal rapidity range:

CDF |y| < 0.6

D0 |y| < 1.8

ATLAS & CMS |y| < 2.5

ALICE e+e |y| < 0.9

ALICE μ+μ 2.5 < |y| < 4

LHCb 2 <|y| < 5

cosδ =
m pL

mT p

Gedankenscenario:
how would different experiments observe a Drell-Yan-like decay distribution

*“naturally” of the kind   1 + cos2θ in the Collins-Soper frame]
with an arbitrary choice of the reference frame?



The lucky frame choice
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(CS in this case)

ALICE μ+μ / LHCb
ATLAS / CMS
D0
ALICE e+e

CDF



Less lucky choice
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(HX in this case)

λθ = +0.65

λθ = 0.10

+1/3

1/3

ALICE μ+μ / LHCb
ATLAS / CMS
D0
ALICE e+e

CDF



Message nº2
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When observed in an arbitrarily chosen frame, the simplest possible pattern of a 
constant natural polarization may be seen as a complex decay distribution rapidly 
changing with pT and rapidity. This is not wrong, but gives a misleading view of the 
phenomenon, even inducing an artificial dependence of the measurement on the 
specific kinematic window of the experiment.

Measure in more than one frame.



Message nº3
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Warning: transformed (= not natural) polarization depends not only on the acceptance 
interval, but also on the acceptance shape!

The problem can be solved by measuring in small kinematic cells.

Also theoretical calculations should take into account how the momentum distribution is 
distorted by the acceptance of the specific experiment, or provide event-level predictions.

Avoid (as much as possible) kinematic averages.



Frame-independent polarization
32

3
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Measuring frame-invariant quantities is useful for

• a self-consistency check of the analysis (is      really the same in two frames?)

• a clearer representation of the results, removing frame-induced kinematic dependencies



The shape of the distribution is obviously frame-invariant.
→ there exists a family of frame-independent quantities, e.g.

λθ = +1
λφ = 0

λθ = –1/3
λφ = +1/3

λθ = +1/5
λφ = +1/5

λθ = –1
λφ = 0

λθ = +1
λφ = –1

λθ= –1/3
λφ = –1/31   1  

z

(and any 
function 
of it)



Advantages
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Invariant quantities provide an easier representation of polarization results.

Let us consider, for illustrative purposes, the following (purely hypothetic) mixture 
of subprocesses for  production:

1)  f (1) = 60% of the events have a natural transverse polarization in the CS frame

2)  f (2) = 40% of the events have a natural transverse polarization in the HX frame



Frame choice 1 
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All experiments choose the CS frame

ALICE μ+μ / LHCb
ATLAS / CMS
D0
ALICE e+e

CDF



Frame choice 2
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All experiments choose the HX frame

ALICE μ+μ / LHCb
ATLAS / CMS
D0
ALICE e+e

CDF



Any frame choice
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The experiments measure an invariant quantity, for example



λ =
λθ + 3 λφ

1  λφ
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is an “average of the natural polarizations”, 
irrespective of the directions of the respective axes:

( )i





( )if = statistical weight of the i-th process

= i-th “natural” polarization

ALICE μ+μ / LHCb
ATLAS / CMS
D0
ALICE e+e

CDF



Message nº4
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Frame-invariant quantities are immune to “extrinsic” kinematic dependencies 
induced by the observation perspective.
They minimize the acceptance-dependence of the measurement.

Use invariant relations to facilitate comparisons.



Experimental biases are not frame-invariant
38

cosθHX

φCS

cosθCS

φHX

helicity Collins-Soper

This spurious “polarization” must be accurately corrected.

→ unaccounted detector effects due to acceptance limitations will
violate the physical frame-invariant relations between decay angular parameters.

→ checking whether the same value of an invariant quantity is obtained
(within systematic errors) in two distinct polarization frames is a non-trivial test.

Minimum 
detector 
sensitivity to 
muon momenta 
+ trigger cuts

Reconstructed
unpolarized (1S)

CMS-like MC with
pT(μ) > 3 GeV/c 
(both muons)

pT() > 10 GeV/c,
|y()| < 1,

The “detector polarization frame” is naturally defined in the LAB

The induced anisotropies have not the properties of a J = 1 decay distribution



Example
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Example of preliminary J/ψ result, before evaluation of systematic errors

→ check quantitatively by calculating
the average invariant “polarization”

3

1
 



 









0.49 [± 0.13]

[CS and HX data fully 
statistically correlated]

order of magnitude of the expected 
systematic error on the anisotropy 
parameters

λ(HX)  λ(CS) =~ ~

HX  / CSλθ

λφ

Is this a self-consistent pattern?



Message nº5
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Use invariant relations
for a better control over systematic effects.



Polarization dependence of the dilepton acceptance
41

cosθHX

φCS

cosθcs

φHX

The efficiency determination in the zero-acceptance domains is 100% dependent on the 
polarization information fed into the Monte Carlo simulation

The acceptance depends on both polar and azimuthal anisotropies, differently in 
different frames.
E.g., high pT: depends mostly on λθ(HX) and on λφ(CS)



Summary
• Even if experimentally challenging, polarization measurements are textbook exercises 

of basic quantum mechanics. By keeping in mind fundamental notions  we will 
perform better polarization measurements

• The observable angular distribution reflects the rotational-covariance properties of 
angular momentum

– it depends (strongly) on the reference frame according to definite rules

– its parameters satisfy a frame-independent identity, a special case of which is the  
Lam-Tung relation

• In the quarkonium analyses of CMS, we will

– determine the full angular decay distribution, not only the polar anisotropy

– provide results in two polarization frames

– avoid averages over large kinematic intervals, using (pT ,y) cells

– exploit the existence of frame-independent relations

• to detect residual systematic effects 

• to facilitate the comparison with theoretical calculations and other results
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Basic meaning of the frame-invariant quantities
43

Let us suppose that, in the collected events, n different elementary subprocesses yield 
angular momentum states of the kind

(wrt a given quantization axis), each one with probability .

The rotational properties of J=1 angular momentum states
imply that

The quantity

is therefore frame-independent. It can be shown to be equal to

In other words, there always exists a calculable frame-invariant relation of the form

0
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The Lam-Tung limit
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Another consequence of rotational properties of angular momentum eigenstates: 

→ dilepton produced in each single elementary subprocess has a distribution of the type

wrt its specific  “              ” axis.

Case : each subprocess is characterized by a fully transverse polarization

wrt a certain “natural” axis (which may be different from subprocess to subprocess).

( ) ( ) ( ) ( )
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F F

→ 4 1    Lam-Tung identity
(Drell-Yan including pQCD corrections)

( )
0 0ia  

2( ) ( ) ( )1
2 1 1( )i i ia a  F

( ) ( ) ( ), 01 ,0i i i
        

for each state

there exists a quantization axis z’ wrt which

→
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1. The existence (and frame-independence) of the LT relation is the kinematic
consequence of the rotational properties of   J = 1 angular momentum eigenstates

2. Its form derives from the dynamical input that all contributing processes produce 
the dilepton via one transversely polarized photon

Simple interpretation of the LT relation

 Corrections to the Lam-Tung relation (parton-kT, higher-twist effects) should 
continue to yield invariant relations.
In the literature, deviations are often searched in the form

But this is not a frame-independent relation. Rather, corrections should be searched 
in the invariant form

 For any superposition of processes, concerning any J = 1 particle (even in parity-
violating cases: W, Z ), we can always calculate a frame-invariant relation analogous 
to the LT relation.

More generally:

4 1     

inv inv inv1/2 (1 ) (1 4 1 3)         F


